终于可以讲到今天的新闻了。新罕布什尔大学(University of New Hampshire,UNH)任教的张益唐近日声称,其证明了存在无穷多对素数,其差小于7000万。尽管7000万是个很大的数字,但如果结果成立,就是第一次有人正式证明存在无穷多组间距小于定值的素数对。想想我们之前讲的,就会发现,既然素数之间的平均距离越来越远,那么存在无穷多组间距小于定值的素数对,与存在无穷多组间距为2的素数对(孪生素数猜想)是一样神奇的结论。值得一提,如果存在无穷多组间距小于定值的素数,那么,通过取子序列的办法,我们可以得知至少存在一个数字C(小于7000万),使得无穷多组素数之间的间距恰巧为C。无怪乎,美国数学家多利安·戈德菲尔( Dorian Goldfeld)评论说,从7000万到2的距离(指猜想中尚未完成的工作)相比于从无穷到7000万的距离(指张益唐的工作)来说是微不足道的。
他将文章投到《数学年刊》(Annals of Mathematics),从新闻来看,已准备接收。审稿人的评价非常积极,认为其证明是对的,并且是一流的数学工作。Annals是世界上最权威的数学杂志,即使考虑平行地位,也远远大于《自然》(Nature)、《科学》(Science)这些杂志。在Annals上发表数学文章极难,往往都是顶尖数学家才能做到。北京大学的教授发表一篇Annals,都要在数学学院的网站上写个新闻报道一番,可见其难度。考虑到张益唐并不是成名的数学家,审稿人想必是在非常详细的审阅之后才得出的结论。