- UID
- 79816
- 帖子
- 45803
- 积分
- 135359
- 阅读权限
- 255
- 注册时间
- 2008-3-4
- 最后登录
- 2015-6-19
- 在线时间
- 26363 小时
   
|
abc猜想(abc conjecture)最先由Joseph Oesterlé及David Masser在1985年提出。它说明对于任何ε>0,存在常数Cε> 0,并对于任何三个满足a+ b= c及a,b互质的正整数a,b,c,有:
rad(n)在此表示n的质因数的积。[1]
截止2005年,此猜想仍未证明,却衍生一BOINC项目名为“ABC@Home”。
1996年,爱伦·贝克提出一个较为精确的猜想,将rad(abc)用
取代,在此ω是a,b,c的不同质因子的数目。[2]
2012年9月,日本京都大学数学家Shinichi Mochizuki(望月新一)公布了有关abc猜想(abc conjecture)长达500页的证明。虽然尚未被证实整个证明过程是正确无误的,但包括陶哲轩在内的一些著名数学家均对此给出了正面评价。
美国哥伦比亚大学数学家Dorian Goldfeld评价说:“abc猜想如果被证明,将一举解决许多著名的Diophantine问题,包括费马大定理。如果Mochizuki的证明是正确的,这将是21世纪最令人震惊的数学成就之一。”
abc猜想的证明是通过ABC@home 研究的,它利用分布式计算穷举直到 c<=10的满足ABC猜想条件的 (a,b,c) 三元数组,也就是说满足要求 c=a+b, a<b, rad(ABC)<C。其中 rad(n) 称为 n 的根积,意即 n 的所有质因数的乘积,若有重复的质因数则只取一个。例如,rad(504)=rad((2^3)*(3^2)*7)=2*3*7=42。
项目通过研究这些三元数组的分布,试图寻找证明ABC猜想这个数学未解问题的方法。如果证明了 ABC猜想,就可以部分证明费马-卡特兰 (Fermat-Catalan) 猜想,完全证明 Schinzel-Tijdeman 猜想等等。ABC猜想的具体内容是:对于所有e>0,存在与e有关的常数C(e),对于所有满足a+b=c,a与b互质的三正整数组 (a,b,c),均成立 c<=C(e)((rad(abc))^(1+e))。目前支持ABC猜想的证据有很多,比如说ABC猜想的多项式版本成立,ABC猜想也蕴含了费马大定理。D. Goldfeld 评价ABC猜想为“丢番图分析(意即系数与解均为整数的方程的分析)领域中最重要的未解决问题”。[3]ABC@home 希望能够通过了解满足条件的三元数组的分布来协助数学家解决ABC猜想。 |
|